Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.03.16.484099

ABSTRACT

As of March 2022, there have been over 450 million reported SARS-CoV-2 cases worldwide, and more than 4 billion people have received their primary series of a COVID-19 vaccine. In order to longitudinally track SARS-CoV-2 antibody levels in people after vaccination or infection, a large-scale COVID-19 sero-surveillance progam entitled SPARTA (SeroPrevalence and Respiratory Tract Assessment) was established early in the pandemic. Anti-RBD antibody levels were tracked in more than 1,000 people. There was no significant decrease in antibody levels during the first 14 months after infection in unvaccinated participants, however, significant waning of antibody levels was observed following vaccination, regardless of previous infection status. Moreover, participants who were pre-immune to SARS-CoV-2 prior to vaccination seroconverted to significantly higher antibody levels, and antibodies were maintained at significantly higher levels than in previously infected, unvaccinated participants. This pattern was entirely due to differences in the magnitude of the initial seroconversion event, and the rate of antibody waning was not significantly different based on the pre-immune status. Participants who received a third (booster) dose of an mRNA vaccine not only increased their anti-RBD antibody levels ~14-fold, but they also had ~3 times more anti-RBD antibodies compared to the peak of their antibody levels after receiving their primary vaccine series. In order to ascertain whether the presence of serum antibodies is important for long-term seroprotection, PBMCs from 13 participants who lost all detectable circulating antibodies after vaccination or infection were differentiated into memory cells in vitro. There was a significant recall of memory B cells in the absence of serum antibodies in 70% of the vaccinated participants, but not in any of the infected participants. Therefore, there is a strong connection between anti-RBD antibody levels and the effectiveness of memory B cell recall.


Subject(s)
Lymphoma, B-Cell , COVID-19
2.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.08.21260201

ABSTRACT

Importance: Universities are unique settings with large populations, congregate housing, and frequent attendance of events in large groups. However, the prevalence of previous infection with SARS-CoV-2 in university students, including symptomatic and asymptomatic disease, is unknown. Objective: To determine the prevalence of previous infection, risk factors for infection, and the prevalence of persistent symptoms following infection among university students. Design: This was a cross-sectional study that surveyed students about demographics, risk factors, and symptoms, and simultaneously tested their saliva for IgA antibodies to SARS-CoV-2. To estimate the prevalence of previous infection we adjusted our intentional sample of a diverse student population for year in school and age to resemble the composition of the entire student body, and adjusted for the imperfect sensitivity and specificity of the antibody test. Univariate and multivariate analysis was used to identify independent risk factors for infection. Setting: A large public university in Athens, Georgia between January 22 and March 22, 2021. Participants: Undergraduate and graduate students; 488 completed the survey, 432 had a valid antibody result. and 428 had both. Exposure: Previous infection with SARS-CoV-2 based on measurement of IgA antibodies in saliva and adjustment for sample characteristics and test accuracy. Main Outcomes and Measures: The primary outcome was the estimated prevalence of previous infection with SARS-CoV-2. Secondary outcomes were independent risk factors for infection, and the prevalence of persistent symptoms among persons reporting a previous symptomatic infection. Results: The estimated prevalence of previous infection for 432 participants with valid antibody results was between 41% and 42%. Independent risk factors for infection included male sex, having a roommate with a known symptomatic infection, and having 2 or fewer roommates. More frequent attendance of parties and bars was a univariate risk factor, but not in the multivariate analysis. Of 122 students reporting a previous symptomatic infection, 14 (11.4%) reported persistent symptoms a median of 132 days later. Conclusions and Relevance: Previous infection with SARS-CoV-2, both symptomatic and asymptomatic, was common at a large university. Measures that could prevent resurgence of the infection when students return to campus include mandatory vaccination policies, mass surveillance testing, and testing of sewage for antigen to SARS-CoV-2.

3.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.07.03.451026

ABSTRACT

The development of a safe and effective vaccine is a key requirement to overcoming the COVID-19 pandemic. Recombinant proteins represent the most reliable and safe vaccine approach but generally require a suitable adjuvant for robust and durable immunity. We used the SARS-CoV-2 genomic sequence and in silico structural modelling to design a recombinant spike protein vaccine (Covax-19). A synthetic gene encoding the spike extracellular domain (ECD) was inserted into a baculovirus backbone to express the protein in insect cell cultures. The spike ECD was formulated with Advax-SM adjuvant and first tested for immunogenicity in C57BL/6 and BALB/c mice. The Advax-SM adjuvanted vaccine induced high titers of binding antibody against spike protein that were able to neutralise the original wildtype virus on which the vaccine was based as well as the variant B.1.1.7 lineage virus. The Covax-19 vaccine also induced potent spike-specific CD4+ and CD8+ memory T-cells with a dominant Th1 phenotype, and this was shown to be associated with cytotoxic T lymphocyte killing of spike labelled target cells in vivo. Ferrets immunised with Covax-19 vaccine intramuscularly twice 2 weeks apart made spike receptor binding domain (RBD) IgG and were protected against an intranasal challenge with SARS-CoV-2 virus 2 weeks after the second immunisation. Notably, ferrets that received two 25 or 50ug doses of Covax-19 vaccine had no detectable virus in their lungs or in nasal washes at day 3 post-challenge, suggesting the possibility that Covax-19 vaccine may in addition to protection against lung infection also have the potential to block virus transmission. This data supports advancement of Covax-19 vaccine into human clinical trials.


Subject(s)
Lung Diseases , COVID-19
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.05.29.445137

ABSTRACT

As the COVID-19 pandemic continues, the authorization of vaccines for emergency use has been crucial in slowing down the rate of infection and transmission of the SARS-CoV-2 virus that causes COVID-19. In order to investigate the longitudinal serological responses to SARS-CoV-2 natural infection and vaccination, a large-scale, multi-year serosurveillance program entitled SPARTA (SARS SeroPrevalence and Respiratory Tract Assessment) was initiated at 4 locations in the U.S. The serological assay presented here measuring IgG binding to the SARS-CoV-2 receptor binding domain (RBD) detected antibodies elicited by SARS-CoV-2 infection or vaccination with a 95.5% sensitivity and a 95.9% specificity. We used this assay to screen more than 3100 participants and selected 20 previously infected pre-immune and 32 immunologically naive participants to analyze their antibody binding to RBD and viral neutralization (VN) responses following vaccination with two doses of either the Pfizer-BioNTech BNT162b2 or the Moderna mRNA-1273 vaccine. Vaccination not only elicited a more robust immune reaction than natural infection, but the level of neutralizing and anti-RBD antibody binding after vaccination is also significantly higher in pre-immune participants compared to immunologically naive participants (p<0.0033). Furthermore, the administration of the second vaccination did not further increase the neutralizing or binding antibody levels in pre-immune participants (p=0.69). However, ~46% of the immunologically naive participants required both vaccinations to seroconvert.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.01.20.21249279

ABSTRACT

The SARS-CoV-2 pandemic and the vaccination effort that is ongoing has created an unmet need for accessible, affordable, flexible and precise platforms for monitoring the induction, specificity and maintenance of virus-specific immune responses. Herein we validate a multiplex (Luminex-based) assay capable of detecting SARS-CoV-2-specific antibodies irrespective of host species, antibody isotype, and specimen type (e.g. plasma, serum, saliva or blood spots). The well-established precision of Luminex-based assays provides the ability to follow changes in antibody levels over time to many antigens, including multiple permutations of the most common SARS-CoV-2 antigens. This platform can easily measure antibodies known to correlate with neutralization activity as well as multiple non-SARS-CoV-2 antigens such as vaccines (e.g. Tetanus toxoid) or those from frequently encountered agents (influenza), which serve as stable reference points for quantifying the changing SARS-specific responses. All of the antigens utilized in our study can be made in-house, many in E. coli using readily available plasmids. Commercially sourced antigens may also be incorporated and newly available antigen variants can be rapidly produced and integrated, making the platform adaptable to the evolving viral strains in this pandemic.


Subject(s)
Tetanus
SELECTION OF CITATIONS
SEARCH DETAIL